Recombinant DNA Technology

Semester No	Code	Credit Hours
5/8	BI-437	3+0

Course description:

The course objectives are to provide information on techniques used to manipulate genetic materials; and to discuss applications of recombinant DNA technology in medicine, agriculture and environment.

Recommended Books:

1. Brown T. A, "Gene Cloning and DNA analysis: An introduction", Wiley-Blackwell.

2. Desmond S.T. Nicholl, "An Introduction to genetic engineering", Cambridge University Press.

3. Hodge R and N Rosenthal, "Genetic Engineering: Manipulating the mechanism of life (Genetics and Evolution)" Facts on File.

4. Old R. W. and S. B. Primrose, "Principles of Gene manipulation, an introduction to Genetics engineering", Blackwell Scientific Publications.

Prerequisite:

Molecular Biology

Course Learning Outcomes:

Students will be able to understand the importance of recombinant DNA technology. Learn isolation of DNA and its separation on an agarose gel. Understand restriction and ligase enzymes and their application in gene cloning. Understand vectors and their application in gene cloning and expression.

Assessment system:

Quizzes	10-15%
Assignments	5-10%
MSE	30-40%
ESE	40-50%

Week wise Lecture Plan:

Week	Lecture Topic	Quizes	Assignment	
1	Basic concepts in recombinant DNA	1		
	technology,			
2	Gel electrophoresis,			
3	Hybridization, PCR and gene			
	transformation,			
4	Isolation and purification of DNA,			
5	Cutting of DNA molecules,		1	
6	Ligation of DNA molecules, blunt ends		-	
	and cohesive termini, homopolymer			
	tailing,			
7	Cloning vectors: plasmids (bacteria and	2		
	yeast), viruses (CMV, SV40, BPV,			
	Lamda, Mu, M13), Cosmids and			
	Phosmids, YAC's, BACs and PACs.			
8	Cloning strategies (Prokaryotic and		2	
	Eukaryotic); selection and			
	characterizations of recombinant			
	molecules, verifications and			
	amplifications of desired genes,			
9	MSE			
10	Construction and analysis of DNA		3	
	libraries,			
11	-do-			
12	-do-			
13	Maximizing the cloned expression, site	3		
	directed mutagenesis			
14	-do-	1		
15	DNA sequencing techniques			
16	-do-	4		
17	Applications of genetic engineering in			

	medicine, agriculture and environment.
18	ESE

Lab	Equipment	Experiment Detail
Number		
1-3	Chemicals, UV	Isolation of plasmid and chromosomal DNA from
	trans	bacteria and yeast
	illuminator	
4-6	Electrophoresis	Screening of bacteria from plasmid by electrophoresis
	apparatus	of total cell lysate
7-8	Electrophoresis	Gel electrophoresis of plasmid DNA (supercoiled,
	apparatus	linear and digested with restriction enzyme) and
		chromosomal DNA
9-12	Glassware,	Plasmid transformation of <i>E. coli</i>
	chemicals	
13-14	Chemicals,	Comparing plasmids of different molecular weights
	Electrophoresis	using molecular weight markers
	apparatus	
15	PCR machine	DNA amplification
		Lab Exam